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1 Introduction

Considerable progress has been made at the Jet Propulsion Laboratory during Fiscal Year
1998 in the area of visual ordnance recognition. Our primary area of study has been in the
area of algorithm design and evaluation. In addition, the design for a real-time system to
perform ordnance recognition has been completed. This report describes the progress that
has been made during this period, as well as our plans for 1999.

We have concentrated on detection of BLU-97 ordnance, which is in current usage in U.S.
military test ranges (Fig. 1). The body of this type of ordnance is cylindrical and it is 20
centimeters long, with a 6 centimeter diameter. When new, the ordnance is bright yellow in
color, but it is often weathered in practice on the test range.

Figure 1: Image of BLU-97 ordnance acquired at a Nellis Air Force Base test range .

The scenario for which this system has been designed is as follows. A unmanned vehicle
traverses a test range at a speed of approximately 5 mph following a pre-determined route
in order to fully cover the test range. As the vehicle is traversing, the ordnance recognition
system continually examines the terrain in front of the vehicle looking for instances of BLU-
97 ordnance. The ordnance recognition system provides a video signal of the terrain in front
of the vehicle, visually marking the locations of the detected ordnance. When ordnance is
detected, the vehicle will stop (and retreat to a safe stand-o� distance, if necessary), in order
to perform remediation.

We have considered a large suite of algorithms to perform the ordnance recognition in
this scenario, which have been divided into four categories: pre-processing, hypothesis detec-
tion, veri�cation modules, and evidential reasoning. Figure 2 shows the ow of information
between algorithms in these categories, as well as the algorithms in each category that have
been examined. The images are �rst pre-processed in order to yield better detection per-
formance. Candidate ordnance locations are then identi�ed using one or more hypothesis
detection methods. Veri�cation modules are applied to the candidate locations in order to
lower the rate of false positives. Finally, evidential reasoning techniques are used to combine
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the information for the hypothesis detection and veri�cation modules in order to make a
�nal decision on each candidate.

Pre-processing Hypothesis
Detection

Verification
Modules

Evidential
Reasoning

Stereo
Smoothing

Linear discriminant
Neural network
Color cone

Resampling
Parallel edges
Height evaluation
Gaussian filter
Contrast evaluation

Linear pool

Figure 2: The overall algorithmic design. The boxes represent the type of algorithm applied. The

listings below are instances of the type of algorithm.

For each algorithm that has been considered, we evaluate the techniques on a test set from
Nellis Air Force Base [8] with respect to both the detection performance and the computation
time required on a workstation. Using these evaluations, we make recommendations as to
the suite of algorithms that should be included in the �nal system. The current algorithm
design includes stereo preprocessing, hypothesis detection using a color cone discriminator,
hypothesis resampling followed by several veri�cation modules, and probabilistic evidential
reasoning to combine the results of the veri�cation modules.

Taking into account the suite of algorithms above we have completed a hardware design
that will allow real-time operation (0.5-2 frames per second) of the method. This design
includes a pair of progressive-scan, 3-CCD color cameras for input to a high-end PC/104
Plus pentium (or compatible) card running LynxOS. Output will be provided through a
video signal (NTSC, S-video, and VGA output will be available) that displays the imagery
from one of the cameras overlaid with highlights demarking the candidate ordnance locations.
Serial communications will provide additional information with respect to the detections.

Following the discussion of our progress in 1998, we describe our plans for �scal 1999
including schedule, milestones, and expected cost. Highlights of the plan include two data
collections (one early in the year using digital cameras on a tripod, one later in the year
using the real-time system) and �eld tests on both a vehicle at JPL and the AFRL vehicle.
Our 1999 e�orts will culminate with the delivery of a complete system in September.

2 Algorithm description

In this section we describe the suite of algorithms that has been considered for performing
real-time detection of surface-lying BLU-97 ordnance. The algorithms have been divided
into four categories:
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1. Pre-processing
Prior to the detection of candidate ordnance locations in the imagery, it is often useful
to perform some pre-processing on the imagery in order to improve the quality of the
data with respect to the detection performance, or to extract data that is useful in the
detection process. Examples that we consider are (1) smoothing of the image in order
to reduce noise and undesirable image texture, and (2) stereo triangulation of imagery
from a pair of cameras in order to determine the range to the various locations in the
image. Either, both, or neither of these could be selected for the the real-time system
depending on the relative performance enhancement and computation time required.

2. Hypothesis detection
We must have some method to select candidate locations in the image that could
contain instances of the ordnance. For hypothesis detection, we have concentrated on
methods that examine the color at the various image pixels, since this technique is
fast and yields a low rate of false negatives in our test set. Each pixel is classi�ed
as either ordnance-like or non-ordnance-like according to its color. Candidates are
located by detecting large sets of connected ordnance-like pixels. Several techniques
have been considered to determine how to classify the individual pixels, including
Fisher's linear discriminant, neural networks, and a convex color cone discriminator.
A single hypothesis detection method should be selected. While more than one of
these techniques could be used in combination, this would increase the processing time
signi�cantly, while detecting largely the same candidates.

3. Veri�cation
Once candidates positions have been located, further processing can be performed in
order to reduce the rate of false positives (while largely retaining the true positives).
At the candidate locations, we can use methods that require increased computational
resources, since we examine only a small portion of the image during veri�cation.
Methods that have been considered for performing veri�cation include parallel segment
detection, correlation-based �ltering, height evaluation, and contrast evaluation. An
additional technique that is useful for the above veri�cation methods is a resampling
of the image at the candidate location such that the dominant orientation is rotated
to a canonical orientation and range data is used to scale the ordnance to a canonical
scale. Multiple veri�cation techniques can be used since these are applied only to the
candidate ordnance locations in the image.

4. Evidential reasoning
Finally, the results of the veri�cation modules (in the form of veri�cation scores) must
be combined together with the initial score from the hypothesis detection stage using
some evidential reasoning process in order to make a decision on whether the candidate
location should be reported to the operator. We have concentrated on a probabilistic
combination model where each process generates an estimated probability together
with a con�dence value. The probabilities are combined according to the con�dence
values in order to generate the �nal score.

5



The next subsection describes some important design considerations for the overall sys-
tem. The following subsections then discuss the algorithms considered in further detail.

2.1 Design considerations

In designing a real-time ordnance recognition system, it is important to consider the imaging
geometry in order to ensure that the system has su�cient opportunity to detect the ord-
nance. Some important considerations are the swath-width, minimum and maximum range
of detection, vehicle speed, and the number of pixels on target. We examine these issues
here.

The height of the cameras on the vehicle is estimated to be 2 meters, and we assume
that the ground plane is approximately at for this analysis. Figure 3 shows a diagram
of the imaging geometry. Given that we would like to be able to sense approximately in
the range between d1 = 10 meters and d2 = 30 meters in front of the vehicle, and that we
require a swath-width of approximately l1 = 3 meters to ensure clearance of the vehicle, the
�eld-of-view (FOV) should be as follows to yield the minimum swath-width at the closest
range (10 meters):

� = 2 sin�1 l1=2q
d21 + (l1=2)2

= :2978 = 17:06� (1)

For the cameras to observe the furthest range (30 meters), this implies that the camera tilt
� should satisfy:

tan
�

2
� � +

�

2
=

d2
h

(2)

� = :2155 = 12:34� (3)

With these parameters, the closest visible range will be:

d0 = h tan
�

2
� ��

�

2
= 5:24 meters (4)

The cross-range distance at the furthest distance is:

l2 = 2d2 sin
�

2
= 8:90 meters (5)

A maximum vehicle speed of 5 MPH, coupled with a processing speed of no worse than 1
frame per 2 seconds implies that the vehicle will travel no more than 14.67 feet (4.47 meters)
per iteration of the algorithm, which will give the system multiple chances to detect the
ordnance while it is in the visible range.

The dimensions of the image will be 512�480. If the orientation of the ordnance is
perpendicular to the cameras, then for an instance of BLU-79 at a range of 10 meters, the
number of pixels on target in the horizontal direction will be:
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Side view Top view

h

d1 d2

�
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d1

d2

� l1 l2

Figure 3: Schematic of the camera geometry. The side view shows the feasible range of detection

and the top view shows the swath width at the various ranges. There are three degrees of freedom

in this system (e.g. �, �, and h).

ph1 =
w

l1
� 512 pixels = 34:1 pixels (6)

and the number of vertical pixels on target will be:

pv1 =
2r

l1
� 512 pixels = 10:2 pixels (7)

At the furthest range, these dimensions become:

ph2 =
w

l2
� 512 pixels = 11:5 pixels (8)

pv2 =
2r

l2
� 512 pixels = 3:5 pixels (9)

2.2 Pre-processing

The techniques that we consider for pre-processing the image data prior to hypothesis de-
tection are smoothing and stereoscopy. The following subsections describe these methods.

2.2.1 Stereo

The use of stereo range data [6, 7] is anticipated to be crucial to the ordnance recognition
system that will be developed. This information can be used for several purposes:

1. Bounds can be placed on the size of the ordnance at any location in the image, thus
reducing both the search space and the number of false positives found in the hypothesis
detection stage.
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2. A hypothesis resampling step can be performed that transforms each hypothesis de-
tected into a canonical frame of reference such that each hypothesis has the same
scale.

3. The appropriate scale can be selected at each location in the image for smoothing and
edge detection, if desired.

4. Obstacle detection can be performed using the range data, if desired.

In order to perform stereo range mapping, an o�-line step, where the stereo camera rig
is calibrated must �rst be performed. We use a camera model that allows arbitrary a�ne
transformation of the image plane [12] and that has been extended to include radial lens
distortion [3]. The remainder of the method is performed on-line.

At run-time, each image is �rst warped to remove the lens distortion and the images are
recti�ed so that the corresponding scan-lines yield corresponding epipolar lines in the image.
The disparity between the left and right images is measured for each pixel by minimizing the
sum-of-squared-di�erence (SSD) measure of a window around the pixel in the Laplacian of
the image. Subpixel disparity estimates are computed using parabolic interpolation on the
SSD values neighboring the minimum. Outliers are removed through consistency checking
and smoothing is performed over a 3�3 window to reduce noise. Finally, the coordinates of
each pixel are computed using triangulation.

Note that not every pixel is assigned a range with this method. There are a variety of
factors that result in some pixels not being assigned a range including occlusion, window
e�ects, �nite disparity limits, and outliers. Despite this problem, we desire a range estimate
at each pixel in the image. To resolve this problem, we propagate the range values from
neighboring pixels using a simple method that prefers neighbors to the left or right to those
above or below.

Figure 4 shows an example of the range data computed using these techniques.

2.2.2 Smoothing

A basic smoothing operation can be used to reduce noise in the image and to blur undesirable
image textures by convolving the image with a Gaussian �lter with some speci�ed scale �.
However, this ignores the fact that the image phenomena occur at widely varying scales due
to perspective e�ects in the image. An alternative is to perform variable-scale smoothing
guided by range data [9].

Our approach to performing adaptive smoothing is to �lter the image at multiple scales
and then interpolate the response for each pixel at the appropriate scale given by the range
data. We must �rst select an appropriate set of scales to use. Based on the size of the
ordnance and the ranges over which we desire accurate recognition in the test imagery, we
have chosen to work with scales in the range 0:8 � � � 3:2, and we perform smoothing
at three scales (�1 = 0:8; �2 = 1:6; �3 = 3:2) in order to interpolate any scale in the range
accurately. At each scale, we �lter with the Gaussian derivative in both x and y. Each image
is thus convolved with 6 �lters.
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(a) (b) (c)

Figure 4: Range data extracted from a stereo pair. (a) Left image of a stereo pair. (b) Distance from

the camera mapped into color values. Red is closest to the camera and magenta is furthest. Black

pixels indicate no valid range data. (c) Range map after �lling unknown values with estimates.

Now, we must interpolate the response at each pixel for the appropriate scale given by the
stereo range information. Since there is an inverse linear relationship between the range to
an object and its scale in the image, we map the range information into a scale for smoothing
and edge detection using:

�(x; y) = K=R(x; y); (10)

where R(x; y) is the range estimate given by the stereo processing at the pixel, and K is a
constant determined by the size of the object of interest (the ordnance in this case).

We approximate the correct response at each pixel using parabolic interpolation (sepa-
rately for x and y) in the ln� domain. Let F�(x; y) be the desired response at (x; y) for
the scale �. In determining the equation that yields the appropriate response, it is useful to
perform a coordinate transform such that z = log2

�(x;y)
�2

. For �1 =
1
2
�2 = 1

4
�3, this yields

z1 = �1, z2 = 0, and z3 = 1. With this transformation it is simple to show that:

F�(x; y) � az2 + bz + c (11)

a =
1

2
(F�1(x; y)� 2F�2(x; y) + F�3(x; y)) (12)

b =
1

2
(F�3(x; y)� F�1(x; y)) (13)

c = F�2(x; y) (14)

z = log2
�(x; y)

�k
(15)
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2.3 Hypothesis detection

Several methods have been consider for detecting candidate ordnance locations using color
processing. The methods described in the following subsections examine the color at each
pixel in the image and classify it as either ordnance-like or non-ordnance-like. The ordnance-
like pixels are grouped using a connected components techniques and hypotheses are identi-
�ed by �nding large connected components of ordnance-like pixels.

2.3.1 Fisher's Linear Discriminant

We have implemented an adaptive version of color-based recognition based on Fisher's linear
discriminant. The color statistics of the ordnance are learned o�-line, while those of the
background are estimated at run-time. This allows the discriminator function to vary with
the image properties. The disadvantage to this adaptive approach is that the computation
time is greater, since the discriminator function can't be pre-compiled into a lookup table.

The basic idea of Fisher's linear discriminant (see, for example, [2]) is to project the data
vectors onto a line by taking the dot product of each with a carefully chosen vector such
that the two populations have the maximum separation possible. A point on the line can
then be chosen to be the boundary between the decision classes. If the vector projects to
one side of the point it is classi�ed as ordnance and if it projects to the other it is classi�ed
as background. This is the same as dividing the vector space with a plane and using this
plane to discriminate between the two populations. If the plane is chosen correctly, good
classi�cation results can sometimes be achieved.

Fisher's linear discriminant can be formulated as follows. We have samples from two
distributions, the ordnance pixels and the background pixels. Call the set of ordnance
samples O and the set of background pixels B. Each individual sample is a vector of the
three color coordinates that make up the pixel. Let mo and mb be the means of the sample
populations. The within-class scatter matrices are de�ned by:

So =
X
x2O

(x�mo)(x�mo)
t (16)

Sb =
X
x2B

(x�mb)(x�mb)
t (17)

and

Sw = So + Sb (18)

According to Fisher's linear discriminant, the carefully chosen vector that we should use
for the dot-product is given by:

w = S�1
w (mo �mb) (19)
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2.3.2 Neural network

A neural network can be used to perform the classi�cation between the ordnance-like and
non-ordnance-like pixels. A subset of the imagery has been classi�ed manually and used for
training such a classi�cation method using the back-propagation algorithm. We have used
a neural network simulator called NevProp3 [4] to train the network. We chose to use a
network with 3 input units (the basic color coordinates), 5 hidden units, and 1 output unit
specifying the likelihood that the pixel is ordnance-like (Fig. 5).

r

g

b

Output

Figure 5: Network structure for classifying pixels.

In practice, the output value of the neural network for the various inputs are compiled
into a look-up table to allow fast processing at run-time. A disadvantage to the neural
network method is that the learned values are non-intuitive to understand and cannot be
easily tuned by hand under changing conditions.

2.3.3 Color cone

Another method that we can use to classify pixels is to de�ne a convex polyhedron in the
color space and classify those pixels that fall into the polyhedron as ordnance-like and those
outside as non-ordnance-like. This subsection develops one such method of doing so using a
polyhedral cone in the color space.

It has been shown that normalized color-space coordinates are independent of the scene
geometry [5]. This means that for scene points illuminated by the same spectral power
distribution, the orientation of the scene point, the orientation of the illumination, and the
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overall brightness of the illumination do not a�ect the color coordinates. This property holds
for any color coordinate that is the ratio of two of the basic color coordinates (r, g, and b).
Using such ratios will thus yield invariance to scene geometry and illumination brightness,
if we assume that the spectral power distribution of the illumination in the scenes in which
we are interested is constant.

We can de�ne a cone in the color space by specifying an upper and lower bound on the
ratio of each pair of basic color coordinates:

trb �
r

b
� Trb (20)

trg �
r

g
� Trg (21)

tgb �
g

b
� Tgb (22)

The cone in the color space yielded by these equation has a convex cross-section consisting
of six sides (one for each constraint).

Now, we must determine the upper and lower bounds on these ratios that will yield
good classi�cation of the ordnance-like pixels. This can be performed through training using
examples. We have used a simple method that approximates gradient descent search in order
to bring the rate of false positive and false negatives into an equilibrium where the rates are
approximately the same.

In addition, we impose a constraint on the overall brightness of each pixel that has the
e�ect of truncating the cone:

r2 + g2 + b2 < trgb (23)

This rules out areas of the image that are too dark to yield accurate classi�cation results.
As with the previous method, we can compile the resulting classi�cation function into a

look-up table for fast processing at run-time.

2.3.4 Connected components

After classifying each of the pixels according to one of the above criteria, we detect the
connected regions of the image that have been classi�ed as ordnance-like according to the
color. Detecting the connected components can be performed in linear time in the size of
the image using a version of the union-�nd data structure [1]. This method uses a two-pass
algorithm to detect the large, connected regions of ordnance-like pixels in the image. If the
size of the region is larger than some threshold T (which is a function of the range to the
location), then the location is considered to be a candidate for further veri�cation.
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2.4 Veri�cation

After detecting candidate ordnance locations, a variety of veri�cation modules can be applied
to the candidates in order to reduce the likelihood of detecting a false positive instance in
the imagery. We can apply much more computation in these veri�cation modules than in
the initial hypothesis generation step since we have greatly reduced the area of the image in
which we are interested. This subsection describes several such veri�cation techniques that
we have examined.

2.4.1 Hypothesis resampling

A �rst step that is useful prior to applying various veri�cation modules is to compute the
dominant orientation in the image at the location of the hypothesis and to resample the
image using this information and the stereo data such that the resampled image is at a
canonical scale and orientation.

We detect the dominant orientation in the image by applying a simple gradient operator
that examines each pixel and three of its' neighbors and then histogramming the gradient
orientations found (weighted by the gradient magnitude) at each pixel. The histogram bin
with the largest score is taken to be the dominant orientation of the hypothesis.

For each pixel in the resampled image, we then compute the corresponding location in
the original image according to:

x =
sd
sh
(xi � xh) cos � +

sd
sh
(yi � yh) sin � (24)

and

y = �
sd
sh
(xi � xh) sin � +

sd
sh
(yi � yh) cos �; (25)

where � is the dominant orientation, sd is the desired scale, sh is the scale of the hypothesis
according to the range data, xi and yi and the coordinates in the resampled image, and xh
and yh and are the position of the hypothesis in the original image. Since, the computed x
and y are continuous values, we determine the pixel values using bilinear interpolation:

x0 = bxc x1 = x0 + 1 � = x� x0 (26)

y0 = byc y1 = y0 + 1  = y � y0 (27)

I(x; y) = (1��)(1�)I(x0; y0)+(1��)I(x0; y1)+�(1�)I(x1; y0)+�I(x1; y1)(28)

2.4.2 Parallel edge detection

An initial attempt at detecting ordnance found the candidates by locating pairs of parallel
segments in the image edge map [10]. While it was found that this technique was too slow
and too error-prone to be used as a hypothesis detection stage, a simple version can still be
used as one of several veri�cation modules.
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The �rst step in this technique is to detect the gradients in the resampled candidate win-
dow. The gradients are then histogrammed according to their orientation. If an orientation
is found where the score is very high, this indicates that either a single, very strong, straight
edge is present, or a pair of strong parallel edges are present. This information is used to
evaluation the hypotheses.

2.4.3 Gaussian �lter

Since the candidate windows have been resampled to a canonical scale and orientation, a
simple measure of the similarity between the window and a piece of ordnance is a matched
�lter, which in this case would be a yellow rectangle placed on a background of the average
color terrain. However, since the position, orientation, and scale of the window are estimates,
and, in addition, foreshortening will cause the length of the rectangle to be unknown, we
have instead used a �lter consisting of Gaussian derivatives. This allows for errors in the
estimation of these variables and yields increased robustness. Our �lter consists the product
of a Gaussian second derivative in the y-direction (across the cross-section of the ordnance)
with a Gaussian in the x-direction (across the length of the ordnance). The �lter is thus
given by:

F (x; y) =

 
y2 � �2

y

2��x�5
y

!
e
� x

2

2�
2
x

�
y
2

2�
2
y (29)

and its appearance can be seen in Figure 6.

Figure 6: Gaussian derivative �lter.

The �lter is applied only to the red band of the color image, since this band contains
most of the useful information for discriminating ordnance from background.

2.4.4 Height evaluation

When we have stereo range data, it is sometimes possible to detect the di�erence in height
of the terrain at the location of an ordnance instance. A simple technique that we use is to
examine the range data corresponding to the pixels in the candidate windows and determine
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the minimum and maximum heights present. The di�erence in these values yields a measure
of the amount of height variation in the window.

2.4.5 Contrast evaluation

A �nal indicator that we use to help verify instances of ordnance is the contrast present in
the candidate window, which we measure by the maximum gradient present, since we expect
the true instances of the ordnance to yield a signi�cant gradient between the ordnance and
the background. While false positives might also yield such a high gradient, this will not
always be the case, and we can thus use this information to help discriminate between true
positive and false positives.

2.5 Evidential reasoning

Once the various veri�cation modules have generated scores for each of the candidate ord-
nance locations, we must have some method for combining the scores into a single measure
that can be used to evaluate each candidate. We use a linear opinion pool (see, for example,
[11]), where the results of each measurement are combined according to a weighting factor
that is determined along with the probability result. The weighting factor represents the
con�dence in the probability estimate that is generated.

Let H be the hypothesis that a certain candidate actually represents an ordnance in-
stance. Each veri�cation module v yields a probability value Pv(H) that the hypothesis is
correct and a weighting factor Wv(H). We can combine the values from any two veri�cation
modules (for example v1 and v2) using the following relationships:

Pv1+v2(H) =
Wv1(H)Pv1(H) +Wv2(H)Pv2(H)

Wv1(H) +Wv2(H)
(30)

Wv1+v2(H) = Wv1(H) +Wv2(H) (31)

Since these equations are associative, it does not matter in which order the values are
combined; the �nal result will be the same. The candidate is �nally accepted if, after
combining all of the scores from the various veri�cation modules, the probability value above
a pre-determined threshold.

3 Algorithm evaluation

This section examines the performance of the algorithms described above with respect to
both the detection performance and the computation time required. Recommendations are
made as to the algorithms to use in the �nal system.
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3.1 Detection performance

We �rst examine the performance of the algorithms with respect to the ordnance detection
rate versus the false alarm rate. This performance is captured by receiver-operating charac-
teristic (ROC) curves that plot the detection rate on one axis versus the false alarm rate on
the other as the detection threshold is varied. Such curves allow the threshold to be chosen
such that the tradeo� between the detection rate and the false alarm rate is optimized. The
ideal ROC curve rises very quickly until the detection rate is nearly unity with few false
positives and then attens as false positives become more likely with a decreasing threshold.

3.1.1 Hypothesis detection

Among the algorithms, the hypothesis detection stage is perhaps the most important and we
thus evaluate it �rst. We assume for this evaluation that stereo is used, since it is crucial to
setting the detection threshold appropriately (instances at farther ranges are allowed to have
lower a threshold on the number of ordnance-like pixels, since they appear smaller in the
image). However, we do not use any smoothing, yet. The e�ects of smoothing are evaluated
subsequently.

Training set In order to evaluate the hypothesis detection methods, we have created a
training set of ordnance images from a set of imagery collected at a Nellis Air Force Base test
range [8]. The training set consists of 10 images that have been pre-selected. For each image,
the regions corresponding of ordnance instances were found manually by noting the corners
of a quadrilateral that �t the instance well. Each pixel inside one of the quadrilaterals was
considered to be part of the ordnance instance. Any pixel not inside any of the quadrilateral
was considered to be part of the background. It should be noted that the quadrilaterals were
roughly rectangular in order to �t the body of the ordnance. In general, the small chute was
sometimes still attached to the ordnance was considered to be part of the background for
classi�cation purposes. Figure 7 shows two example images.

Results The results obtained by the hypothesis detection methods can be seen in Figure 8.
The color cone method for detecting the hypotheses is clearly superior to the other methods
and the linear discriminant has the lowest performance. This is probably because the linear
discriminant uses only a single plane in the color space to attempt to separate the classes. The
color cone uses the intersection of seven planes in the color space to de�ne a narrow region
and is formulated in such a way that the illumination e�ects are automatically negated. The
neural network can approximate these e�ects, but not easily.

3.1.2 Smoothing

We now examine the e�ect that smoothing has on the performance of the hypothesis detection
stage. The color cone method of hypothesis detection is used for this test. Two types of
smoothing are considered. First, a conventional, Gaussian smoothing operator with � = 2
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Figure 7: Example images from the data set collected at Nellis Air Force Base.

pixels was applied to the test imagery (including the training images). Second, we used the
variable-scale smoothing guided by stereoscopy described above. Figure 9 shows the ROC
curve for these two cases, as well as the case with no smoothing. It can be observed that the
smoothing does not signi�cantly improve the hypothesis detection results.

3.1.3 Veri�cation modules

Four veri�cation modules have been tested with respect to the performance improvement
that is gained over using solely the hypothesis detection stage. These veri�cation modules
were described in the previous section:

� Gaussian �lter

� Parallel edge detection

� Height evaluation

� Contrast evaluation

The use of the Gaussian �lter veri�cation module and the parallel edge detection technique
also require the use of the hypothesis resampling technique. The other techniques do not
require hypothesis resampling.

Figure 10 shows the results of applying each of the veri�cation modules separately. It can
be seen that the use of each of the veri�cation techniques improves the performance of the
detector, since the curves with veri�cation mostly lie above the curves with no veri�cation.
Figure 11 shows the results of using all of the veri�cation modules together. The results
are certainly better than not using any of the veri�cation modules, but it is not completely
clear that all of the veri�cation modules are necessary, since the overall result is only slightly
superior to some of the individual veri�cation modules. Further analysis on the data set
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Figure 8: Receiver-operating characteristic curve showing the performance of the hypothesis de-
tection techniques. The green curve shows the performance of the color cone technique. The

purple curve shows the performance of the neural network method. The yellow curve shows the

performance of the linear discriminant function.
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Figure 9: Receiver-operating characteristic curve showing the performance of the color cone tech-
nique with various types of smoothing. The green curve is the case with no smoothing. The

yellow curve is conventional smoothing. The purple curve is for the case with adaptive smoothing

according to the range data.
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(a) (b)

(c) (d)

Figure 10: Receiver-operating characteristic curves showing the performance of the veri�cation

modules combined with the color cone techniques for hypothesis detection. In each case the green

curve is the case with no veri�cation modules and the yellow curve is the case using a single veri-

�cation module. (a) Gaussian �lter (b) Parallel edge detection (c) Height evaluation (d) Contrast

evaluation
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Figure 11: Receiver-operating characteristic curves showing the performance of of all of the veri�-

cation modules. The green curve is the case with no veri�cation modules. The yellow curve is the

case with all of the veri�cation modules.
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to be collected early this �scal year will allow us to determine what combination of these
modules provides the best cost/performance ratio.

3.2 Computation time

In addition to the detection performance, we must strongly consider the computation time
required by the algorithms, since running in near real-time (0.5 to 2 frames per second) is
necessary to accommodate a vehicle speed of of 5 MPH. Table 1 shows the performance that
has been observed on a SPARCstationTM20 for the algorithms we have considered. We note
that the SPARCstationTM20 has a 60 MHz clock speed and we expect the techniques to run
considerably faster on the 233 MHz pentium compatible chip that we have selected for use
in the real-time system.

Module Algorithm Time required
Stereo 0:900y seconds per image

Pre-processing Smoothing 0:800y seconds per image
Adaptive smoothing 2:500y seconds per image
Neural network 0.624 seconds per image

Hypothesis detection Color cone 0.624 seconds per image
Linear discriminant 1.720 second per image
Hypothesis resampling 0.103 seconds per hypothesis
Gaussian �lter 0.008 seconds per hypothesis

Veri�cation Contrast evaluation 0.045 seconds per hypothesis
Height evaluation 0.003 second per hypothesis
Parallel edge detection 0.075 second per hypothesis

Evidential reasoning Linear opinion pool 0.001 second per image

y
Estimate.

Table 1: Processing time required by various algorithm modules as measured on a

SPARCstationTM20.

The stereo pre-processing technique requires signi�cant computation, but the results of
the stereo pre-processing are important to the detection capabilities and are indispensable
if obstacle detection is desired. The smoothing techniques also require signi�cation com-
putation, and since they do not appear to yield a signi�cant improvement in the detection
performance, they should not be included in the �nal algorithm.

The hypothesis detection methods that can be compiled into a look-up table (the neural
network and the color cone techniques) require the same computation time to detect candi-
date locations, since they use the same code, once the look-up table has been computed. The
linear discriminant method requires more time, since it computes the discriminator function
on-line.
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The veri�cation modules all require relatively little computation time per hypothesis that
has been located. We thus recommend the use of all of them until they can be evaluated
further on a larger test set, such as the one we will be collecting early this �scal year. In
addition, the evidential reasoning method is necessary, but requires very little computation
time.

3.3 Recommendations

Based on the detection and computational performance described above, it is our recom-
mendation that algorithms used on the �nal system include stereo but not smoothing for
pre-processing, the use of the color cone hypothesis detection method, and all four of the
veri�cation modules, in addition to the linear opinion pool for evidential reasoning.

4 Hardware

We have completed a preliminary design of the hardware necessary to process the data at
a rate of 0.5-2 frames per second (Fig. 12). This design includes two color cameras and
frame-grabbers to input images for stereo processing. The CPU we have selected is a 233
MHz Pentium PC/104 Plus board and we anticipate using the Lynx operating system. The
CPU will perform lens control through RS-232 communications with the cameras.

Two PC/104 PC card drives will be used. One for storage of the operating system and
other necessary system �les and the other to store images for data collection. A power
converter will be used to provide power to the PC/104 stack from the 12V external input
and a cooling fan is necessary to prevent overheating.

The CPU will output results through VGA graphics and RS-232 communications. A
scan converter will convert the VGA graphics to NTSC video (or optionally S-video) output.
We note that this design includes processing of the data up until the generation of the video
signal displaying possible ordnance locations and the serial output of additional information.
This design does not handle the communication of this data between the vehicle and the
operator control station or the display of the information at the operator control station.

A list of the components that we have identi�ed for use on the real-time system appears
in the appendix.

5 Fiscal Year 1999

This section discusses our goals, schedule and budget for �scal year 1999.

5.1 Goals

In the upcoming year, we expect to achieve the following goals:
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Figure 12: Design of the real-time system.
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� Conduct another, more extensive data collection at Nellis that mimics the clearing
operation as it would actually be performed, with sequences of images taken along
straight lines at short intervals. This allows us to both validate the performance of
the algorithm and better characterize the performance of the method with respect to
the range to the target. This data collection would use the color stereo pair of digital
cameras the we purchased last year.

� Assemble the hardware system that will go on the vehicle (including interfacing between
cameras, frame-grabbers, CPU and other cards, mounting cameras on bar, calibrating
cameras, assembling cards and fan in card cage, and testing video output and disk
drive).

� Port code to real-time system. We will use C to implement the software for the real-
time system.

� Tune parameters and test the system stand-alone at Nellis AFB. The nature of the
color-based front-end implies that using a new set of cameras (and frame-grabbers)
with the lenses covered by a colored �lter will require a di�erent look-up table to
identify potential ordnance locations. This �nal data collection will also validate the
performance of the complete architecture.

� Test the system on a vehicle at JPL. This test will be as close as we can make it to
the nominal clearing scenario. We will mount the system at the height and orientation
expected for the �nal system and drive at the expected speed of the AFRL vehicle
toward a BLU-97 mockup at a variety of locations and orientations.

� Conduct a �eld test with the hardware on the AFRL vehicle.

5.2 Budget

We have compiled a tentative budget for �scal year 1999.

5.2.1 Workforce

Our workforce levels are expected to be:

Clark Olson 0.50 work-years
Roberto Manduchi 0.25 work-years
Systems person 0.25 work-years
Jim Lloyd 0.02 work-years

Estimated cost: $180,000

5.2.2 Hardware

The combined hardware cost of the system outlined above is approximately $40,000.
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5.2.3 Overall

We estimate that an additional $20,000 should be su�cient to cover our remaining expenses
including travel, reserve, equipment and miscellaneous expenses such as computer services,
supplies, telephone charges, duplication services, and freight.

Our overall budget for the year is thus expected to be:

Workforce $180,000
Hardware $ 40,000
Travel/Reserve/Misc $ 20,000

Total: $240,000

5.3 Schedule

We expect our schedule for �scal 1999 to be roughly as follows:

� October, 1998:

- Finish second pass at design of hardware system, based on �nal results of algorithm
performance evaluation and runtime evaluation.

- Finish year-end report.

- Travel to Panama City to present and discuss current results.

� November, 1998:

- Collect data set that mimics clearing operation

- Finalize hardware design and make procurements.

� December, 1998:

- Finish evaluation of algorithms on new data set.

� January, 1998:

- Complete training in LynxOS.

� February, 1999:

- Complete and test interface between between CPU, cameras, frame-grabbers, and
video output.

� March, 1999:

- Finish porting algorithms to selected CPU.

� April, 1999:

- Data collection using real-time system at Nellis AFB.

26



� May, 1999:

- Run-time benchmarking of complete system.

- Finish evaluation of system on April data collection.

� June, 1999:

- Test on JPL vehicle using ordnance mock-up.

� July, 1999:

- Conduct �eld test with hardware on AFRL vehicle. (Date negotiable.)

� September, 1999:

- Deliver complete system.

6 Concluding remarks

Considerable work has been accomplished in 1998 towards the generation of the real-time
system to perform ordnance recognition. We have identi�ed algorithms that are successful
in detecting instance of BLU-97 ordnance with a low rate of false positives and characterized
the performance of these algorithms with respect to the detection rate on a dataset from
Nellis Air Force Base and with respect to the computation time on a workstation. This
performance analysis has led to the generation of a set of recommendations for algorithms to
be included on the real-time system. A preliminary design for the system has been completed
that will allow the algorithms to run at the desired rate in order be used on a moving vehicle.
These accomplishments have laid the foundations for the completion of the real-time system
for ordnance recognition in 1999.
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A Components list

The components that we believe are necessary for developing the real-time system are as
follows:
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Component Brand Part(s) Cost

CPU Ampro 233 MHZ CPU
Accessories

Description: Single-board computer with 233 MHZ Pentium CPU and PC/104 Plus
expansion site, and DRAM.
See: http://www.ampro.com/products/littlebd/lbp5x.htm

Component Brand Part(s) Cost

Operating system Lynx Open Development Env. $6995
12 months support $3500
Licenses $3500

See: http:/www.lynx.com/products/lynxos.html

Component Brand Part(s) Cost

Cameras Sony 3-chip color camera 2 � $5444
Power supply 2 � $ 154
Power cables 2 � $ 52
Video out cables 2 � $ 94
Remote control unit $ 611
Lenses 2 � $1844

See: http://bpgprod.sel.sony.com/model.bpg?model=DXC9000

Component Brand Part(s) Cost

Frame-grabbers Imagenation Color frame-grabber 2 � $ 595
See: http://www.imagenation.com/products/PXC200.pdf

Component Brand Part(s) Cost

Video output Aitech International MultiPro Plus $ 209
Description: External VGA-to-NTSC converter with 9v input.
See: http://www.aitech.com/multipro-new.htm

Component Brand Part(s) Cost

Keyboard Wireless Computing Wireless surfboard $ 399
Description: Radio-linked wireless keyboard and touchpad/mouse with
50 ft range. See: http://www.wireless-computing.com/
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Component Brand Part(s) Cost

Disk drive Adtron PC/104 drive 2 � $ 190
See: http://www.syspac.com/~adtron/sddpover.htm

Component Brand Part(s) Cost

Disk cartridge Calluna Technology 520 MB PCMCIA card 2 � $ 423

Component Brand Part(s) Cost

D/A converter Diamond Systems D/A board $ 525
Terminal block $ 69
Ribbon cable $ 10

See: http://www.diamondsys.com/rmm1612.htm

Component Brand Part(s) Cost

Flack shielding McMaster-Carr 12x12x1/8 Polycarbonate $ 10
12x12x1/4 Polycarbonate $ 15

Description: Cameras will be mounted behind sheets of Lexan. We need
pieces to place over lenses for testing.

Component Brand Part(s) Cost

Card cage JPL Stores Electrical box
Toggle switch
Face plate
LED
Mounting clip

Component Brand Part(s) Cost

Cooling fan Nidec TA225DC cooling fan $ 8

Component Brand Part(s) Cost

Power converter Diamond Systems DC/DC power supply
See http://www.diamondsys.com/he104.html.

Component Brand Part(s) Cost

Stereo mount SLIK Twin Plate 400 $ 213
Description: Padded bar to mount cameras on.
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